Abstract:Selenium is an important trace element required by the human body and is closely related to human health and diseases.In recent years, selenium and its compounds have attracted widespread attention for their highly selective cytotoxicity against tumor cells. Selenite, as the most common and studied inorganic selenide in nature, is generally regarded as a pro-oxidant to kill tumor cells. Selenite can react with intracellular thiols to mediate the production of reactive oxygen species, oxidize sulfhydryl groups in related proteins involved in metabolism, transcription, signal transduction, and change its biological activity to inhibit tumor cell proliferation, but its effects of anti-cancer are far more than that. Studies have reported that selenite can regulate these mechanisms to play a role in tumor suppression: inhibiting related enzyme activities and regulating metabolic genes to interfere with tumor nutrient metabolism, activating endogenous and exogenous apoptosis pathways, regulating the epigenetic modification of tumor suppressor genes or oncogenes, being converted into endogenous selenium nanoparticles to mediate cytotoxicity, stimulating immune cells division and activation and assisting in identifying tumor antigens, etc. Further strengthening the research and understanding of the anti-tumor effect of selenite can not only provide certain evidence for the development of new clinical drugs, but also provide new treatment ideas for clinical oncologists, which is of great significance for improving the effect of tumor treatment. This review aims to summarize the research progress of the antitumor effects and mechanisms of selenite.
李雨珊,周岚. 亚硒酸盐抗肿瘤的作用及其机制研究进展[J]. 肿瘤代谢与营养电子杂志, 2020, 7(4): 490-496.
Li Yushan, Zhou Lan. Research progress of antitumor effects and mechanisms of selenite. Electron J Metab Nutr Cancer, 2020, 7(4): 490-496.
1.KRYUKOV G V, CASTELLANO S, NOVOSELOV S V, et al. Characterization of mammalian selenoproteomes[J]. Science, 2003, 300(5624): 1439-1443.
2.VINCETI M, FILIPPINI T, DEL GIOVANE C, et al. Selenium for preventing cancer[J]. Cochrane Database Syst Rev, 2018, 1(1): Cd005195.
3.LIPINSKI B. Redox-active selenium in health and disease: a conceptual review[J]. Mini Rev Med Chem, 2019, 19(9): 720-726.
4.WANG N, TAN H Y, LI S, et al. Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant[J]. Oxid Med Cell Longev, 2017, 2017: 7478523.
5.MCDERMOTT J R, GENG X, JIANG L, et al. Zinc- and bicarbonate-dependent ZIP8 transporter mediates selenite uptake[J]. Oncotarget, 2016, 7(23): 35327-35340.
6.OLM E, FERNANDES A P, HEBERT C, et al. Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite[J]. Proc Natl Acad Sci U S A, 2009, 106(27): 11400-11405.
7.TOBE T, UEDA K, AOKI A, et al. Selenium uptake through cystine transporter mediated by glutathione conjugation[J]. J Toxicol Sci, 2017, 42(1): 85-91.
8.KURVIETIEN L, MONGIRDIENE· A, BERNATONIENE· J, et al. Selenium anticancer properties and impact on cellular redox status[J]. Antioxidants (Basel), 2020, 9(1).
9.AKINS N S, NIELSON T C, LE H V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer[J]. Curr Top Med Chem, 2018, 18(6): 494-504.
10.GANDHI U H, KAUSHAL N, HEGDE S, et al. Selenium suppresses leukemia through the action of endogenous eicosanoids[J]. Cancer research, 2014, 74(14): 3890-3901.
11.DIWAKAR B T, KORWAR A M, PAULSON R F, et al. The regulation of pathways of inflammation and resolution in Immune cells and cancer stem cells by selenium[J]. Adv Cancer Res, 2017, 136: 153-172.
12.SERRA M, COLUMBANO A, AMMARAH U, et al. Understanding metal dynamics between cancer cells and macrophages: competition or synergism?[J]. Front Oncol, 2020, 10: 646.
13.CUI J, YAN M, LIU X, et al. Inorganic selenium induces nonapoptotic programmed cell death in PC-3 prostate cancer cells associated with inhibition of glycolysis[J]. J Agric Food Chem, 2019, 67(38): 10637-10645.
14.DE LA CRUZ-LóPEZ K G, CASTRO-MUOZ L J, REYES-HERNáNDEZ D O, et al. Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143.
15.WU B, GE J, ZHANG Z, et al. Combination of sodium selenite and doxorubicin prodrug Ac-Phe-Lys-PABC-ADM affects gastric cancer cell apoptosis in xenografted mice[J]. Biomed Res Int, 2019, 2019: 2486783.
16.CHEN L, CUI H. Targeting glutamine induces apoptosis: a cancer therapy approach[J]. Int J Mol Sci, 2015, 16(9): 22830-22855.
17.LU W Q, HU Y Y, LIN X P, et al. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells[J]. Oncotarget, 2017, 8(27): 44171-44185.
18.ZHAO J, ZHOU R, HUI K, et al. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells[J]. Oncotarget, 2017, 8(12): 18832-18847.
19.BRUNTZ R C, BELSHOFF A C, ZHANG Y, et al. Inhibition of anaplerotic glutaminolysis underlies selenite toxicity in human lung cancer[J]. Proteomics, 2019, 19(21-22): e1800486.
20.DARCY M S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
21.SESTILI P, FIMOGNARI C. Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species[J]. Biomed Res Int, 2015, 2015: 402386.
22.ZHANG T, ZHAO G, ZHU X, et al. Sodium selenite induces apoptosis via ROS-mediated NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis in 4T1 cells[J]. J Cell Physiol, 2019, 234(3): 2511-2522.
23.HU B, CHENG R, GAO X, et al. Targetable mesoporous silica nanoprobes for mapping the subcellular distribution of H(2)Se in cancer cells[J]. ACS Appl Mater Interfaces, 2018, 10(20): 17345-17351.
24.JIANG C, HU H, MALEWICZ B, et al. Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells[J]. Molecular cancer therapeutics, 2004, 3(7): 877-884.
25.CHIPUK J E, KUWANA T, BOUCHIER-HAYES L, et al. Direct activation of Bax by p53mediates mitochondrial membrane permeabilization and apoptosis[J]. Science, 2004, 303(5660): 1010-1014.
26.WU P, SHI K J, AN J J, et al. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells[J].Cell Death Dis,2014,5(2):e1085.
27.CHEN P, WANG L, LI N, et al. Comparative proteomics analysis of sodium selenite-induced apoptosis in human prostate cancer cells[J]. Metallomics, 2013, 5(5): 541-550.
28.KIM W S, LEE K S, KIM J H, et al. The caspase-8/Bid/cytochrome c axis links signals from death receptors to mitochondrial reactive oxygen species production[J]. Free Radic Biol Med, 2017, 112: 567-577.
29.HU H, JIANG C, SCHUSTER T, et al. Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway[J]. Molecular cancer therapeutics, 2006, 5(7): 1873-1882.
30.FULDA S. Molecular pathways: targeting death receptors and smac mimetics[J]. Clin Cancer Res, 2014, 20(15): 3915-3920.
31.BISWAS S, RAO C M. Epigenetics in cancer: fundamentals and beyond[J]. Pharmacol Ther, 2017, 173: 118-134.
32.SPECKMANN B, GRUNE T. Epigenetic effects of selenium and their implications for health[J]. Epigenetics, 2015, 10(3): 179-190.
33.DE MIRANDA J X, ANDRADE FDE O, CONTI A, et al. Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells[J]. J Trace Elem Med Biol, 2014, 28(4): 486-491.
34.HAZANE-PUCH F, ARNAUD J, TROCMé C, et al. Sodium selenite decreased HDAC activity, cell proliferation and induced apoptosis in three human glioblastoma cells[J]. Anticancer Agents Med Chem, 2016, 16(4): 490-500.
35.BERTHIER S, ARNAUD J, CHAMPELOVIER P, et al. Anticancer properties of sodium selenite in human glioblastoma cell cluster spheroids[J]. J Trace Elem Med Biol, 2017, 44: 161-176.
36.BERTHIER S, LARROUQUèRE L, CHAMPELOVIER P, et al. A new patient-derived metastatic glioblastoma cell line: characterisation and response to sodium selenite anticancer agent[J]. Cancers (Basel), 2018, 11(1).
37.KHALKAR P, ALI H A, CODó P, et al. Selenite and methylseleninic acid epigenetically affects distinct gene sets in myeloid leukemia: A genome wide epigenetic analysis[J]. Free Radic Biol Med, 2018, 117: 247-257.
38.XIANG N, ZHAO R, SONG G, et al. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells[J]. Carcinogenesis, 2008, 29(11): 2175-2181.
39.WANG Y, QIN N, ZHAO C, et al. The correlation between the methylation of PTEN gene and the apoptosis of osteosarcoma cells mediated by SeHA nanoparticles[J]. Colloids and surfaces B Biointerfaces, 2019, 184: 110499.
40.FERNANDES J, HU X, RYAN SMITH M, et al. Selenium at the redox interface of the genome, metabolome and exposome[J]. Free Radic Biol Med, 2018, 127: 215-227.
41.ZHAO L, DUAN Y T, LU P, et al. Epigenetic targets and their Inhibitors in cancer therapy[J]. Curr Top Med Chem, 2018, 18(28): 2395-2419.
42.WEEKLEY C M, HARRIS H H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease[J]. Chemical Society reviews, 2013, 42(23): 8870-8894.
43.OREMLAND R S, HERBEL M J, BLUM J S, et al. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria[J]. Appl Environ Microbiol, 2004, 70(1): 52-60.
44.WEEKLEY C M, AITKEN J B, VOGT S, et al. Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies[J]. J Am Chem Soc, 2011, 133(45): 18272-18279.
45.BAO P, CHEN Z, TAI R Z, et al. Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles[J]. J Proteome Res, 2015, 14(2): 1127-1136.
46.BAO P, CHEN S C, XIAO K Q. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins[J]. Molecular bioSystems, 2015, 11(12): 3355-3361.
47.WU X, ZHAO G, HE Y, et al. Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice[J]. Pharmacol Res, 2019, 147: 104360.
48.KHURANA A, TEKULA S, SAIFI M A, et al. Therapeutic applications of selenium nanoparticles[J]. Biomed Pharmacother, 2019, 111: 802-812.
49.BAO P, LI G X, HE Y Q, et al. Selenium nanovirus and its cytotoxicity in selenite-exposed higher living organisms[J]. Biochem Biophys Rep, 2020, 21: 100733.
50.ZHAO G, WU X, CHEN P, et al. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects[J]. Free Radic Biol Med, 2018, 126: 55-66.
51.GEOFFRION L D, HESABIZADEH T, MEDINA-CRUZ D, et al. Naked selenium nanoparticles for antibacterial and anticancer treatments[J]. ACS omega, 2020, 5(6): 2660-2669.
52.SCHREIBER R D, OLD L J, SMYTH M J. Cancer immunoediting: integrating immunitys roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570.
53.AVERY J C, HOFFMANN P R. Selenium, selenoproteins, and immunity[J]. Nutrients, 2018, 10(9).
54.QIAN F, MISRA S, PRABHU K S. Selenium and selenoproteins in prostanoid metabolism and immunity[J]. Crit Rev Biochem Mol Biol, 2019, 54(6): 484-516.
55.KIREMIDJIAN-SCHUMACHER L, ROY M, WISHE H I, et al. Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells[J]. Biol Trace Elem Res, 1996, 52(3): 227-239.
56.NAIR D, RDESTAD E, KHALKAR P, et al. Methylseleninic acid sensitizes ovarian cancer cells to T-Cell mediated killing by decreasing PDL1 and VEGF levels[J]. Front Oncol, 2018, 8: 407.
57.UENO H, KAJIHARA H, NAKAMURA H, et al. Effect of selenite on T-cell mitogenesis: contribution of ROS production and apoptosis signal-regulating kinase 1[J]. Biol Pharm Bull, 2014, 37(8): 1352-1358.
58.ENQVIST M, NILSONNE G, HAMMARFJORD O, et al. Selenite induces posttranscriptional blockade of HLA-E expression and sensitizes tumor cells to CD94/NKG2A-positive NK cells[J]. J Immunol, 2011, 187(7): 3546-3554.
59.LIPINSKI B. Iron-induced parafibrin formation in tumors fosters immune evasion[J]. Oncoimmunology, 2014, 3: e28539.
60.KIELISZEK M, LIPINSKI B. Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis[J]. Medical hypotheses, 2018, 110: 15-22.
61.KIELISZEK M, LIPINSKI B, BAEJAK S. Application of sodium selenite in the prevention and treatment of cancers[J]. Cells, 2017, 6(4).