|
|
Advances in intestinal microecology and gastrointestinal cancer |
ZHU Ya-ping, GUO Heng-zhao |
Department of Oncology, Zhuhai Peoples Hospital(Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, Guangdong, China |
|
|
Abstract The human microecosystem exists in the gastrointestinal tract, oral cavity, urogenital tract, respiratory tract, skin, and other parts of bodies, which is the most important and complex in the intestine. Intestinal microecology is involved in the development of the body, immune regulation, endocrine metabolism and other functions, and also affected by age, diet, antibiotics, psychological pressure, stress and other factors. The imbalance of intestinal microecology may cause many diseases, including skin diseases, obesity, infectious diseases, cardiovascular and cerebrovascular diseases and autoimmune diseases. With the development of intestinal microecology and gastrointestinal diseases, more and more scholars have found that the development of gastrointestinal tumors are significantly related to intestinal flora imbalance. The imbalance of intestinal flora directly or indirectly affects the development of tumor through the direct contact between microorganism and tumor, the regulation of body immunity, the production of bacterial metabolites and other mechanisms. Additionally, recent studies showed that intestinal microecology is closely related to the efficacy of various immunosuppressive checkpoint inhibitors, such as anti-programmed cell death protein-1 antibody, anti-programmed cell death protein ligand-1 antibody and anti-cytotoxic T lymphocyte associated antigen-4 antibody, which may be a potential biomarker to predict the efficacy of tumor immunotherapy. The paper summarizes the function of intestinal microecology and its role in the development of gastrointestinal cancer, hoping to provide reference for the future research focus and development direction.
|
|
|
|
|
1.Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480.
2.Bai J, Behera M, Bruner DW. The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Support Care Cancer. 2018;26(2):427-439.
3.韩晓丹, 张俊伶, 樊赛军. 肠道菌群对肿瘤治疗的影响. 中国肿瘤临床. 2016;43(22):1017-1020.
4.Lin A, Bik EM, Costello EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8:e53838.
5.Yang J, Tan Q, Fu Q,et al. Gastrointestinal microbiome and breast cancer: correlations mechanisms and potential clinical implications. Breast Cancer. 2017;24(2):220-228.
6.Yoon H, Kim N, Park JH, et al. Comparisons of gut microbiota among healthy control, patients with conventional adenoma, sessile serrated adenoma, and colorectal cancer. J Cancer Prev. 2017;22(2):108-114.
7.向毅, 贵成. 肠道微生态的基本概念. 现代医药卫生. 2019;35(1):5-7.
8.Guarino MP, Cicala M, Putignani L, et al. Gastrointestinal neuromuscular apparatus: an underestimated target of gut microbiota. World J Gastroenterol. 2016;22(45):9871-9879.
9.Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity Curr Opin Microbiol. 2017;35:8-15.
10.Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971-976.
11.Romani L, Zelante T, Palmieri M, et al. The cross-talk between opportunistic fungi and the mammalian host via microbiotas metabolism. Semin Immunopathol. 2015;37(2):163-171.
12.Alexander KL, Targan SR, Elson CO. Microbiota activation and regulation of innate and adaptive immunity. Immunological Reviews. 2014;260(1):206-220.
13.Khanna K, Mishra KP, Ganju L, et al. High-altitude-induced alterations in gut-immune axis: a review. Int Rev Immunol. 2018;37(2):119-126.
14.Li K, Dan Z, Gesang L, et al. Comparative analysis of gut microbiota of native tibetan and han populations living at different altitudes. PLoS One. 2016;11(5):e0155863.
15.Jin Y, Wu S, Zeng Z, et al. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;22:1-9.
16.Yang BG, Hur KY, Lee MS. Alterations in gut microbiota and immunity by dietary fat. Yonsei Med J. 2017;58(6):1083-1091.
17.Rosselot AE, Hong CI, Moore SR. Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections. Curr Opin Gastroenterol. 2016;32(1):7-11.
18.Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19(1):26-30.
19.Gibson MK, Crofts TS, Dantas G. Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol. 2015;27:51-56.
20.Hahn A, Fanous H, Jensen C, et al. Changes in microbiome diversity following beta-lactam antibiotic treatment are associated with therapeutic versus subtherapeutic antibiotic exposure in cystic fibrosis. Sci Rep. 2019;9(1):2534.
21.王文妤, 蒋丽蓉, 邓朝晖, 等. 幽门螺杆菌感染对儿童肠道菌群的影响. 中国小儿急救医学. 2018;25(6):454-458.
22.朱燕燕, 温建勋, 任晓萌, 等. 胃癌患者肠道菌群的分布特点分析. 中国微生态学杂志. 2017;29(6):655-658.
23.Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782-786.
24.Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501-518.
25.Gao Z, Guo B, Gao R, er al. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.
26.Sobhani I, Amiot A, Le Baleur Y, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therap Adv Gastroenterol. 2013;6(3):215-229.
27.Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443-1448.
28.Irrazábal T, Belcheva A, Girardin SE, et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309-320.
29.Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-139.
30.Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014;345(2):235-241.
31.Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254-258.
32.Ridlon JM, Kang DJ, Hylemon PB, et al. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332-338.
33.Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014;12:164.
34.Arthur JC, Jobin C. The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis. 2011;17(1):396-409.
35.甄宏德, 王爱国, 钱祥, 等. 原发性肝癌H-ras12V小鼠肠道微生态的初步研究. 中国微生态学杂志. 2018;30(2):132-136.
36.Rolas L, Makhezer N, Hadjoudj S, et al. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology. 2013;57(3):1163-1171.
37.Spahr L, Lambert JF, Rubbia-Brandt L, et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology. 2008;48(1):221-229.
38.Rolas L, Makhezer N, Hadjoudj S, et al. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology. 2013;57(3):1163-1171.
39.Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527-539.
40.Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504-516.
41.Wang H, Shang X, Wan X, et al. Increased hepatocellular carcinoma risk in chronic hepatitis B patients with persistently elevated serum total bile acid: a retrospective cohort study. Sci Rep. 2016;6:38180.
42.Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97-101.
43.Yang J, Tan Q, Fu Q, et al. Gastrointestinal microbiome and breast cancer: correlations, mechanisms and potential clinical implications. Breast Cancer. 2017;24(2):220-228.
44.Shalapour S, Lin XJ, Bastian IN, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017;551(7680):340-345.
45.Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465-478.
46.Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol. 2019;9:112.
47.薛越, 王青.肠道菌群与恶性肿瘤的研究进展. 实用肿瘤杂志. 2016;31(1):13-17.
48.Katayama Y, Yamada T, Tanimura K,et al. Impact of bowel movement condition on immune checkpoint inhibitor efficacy in patients with advanced non-small cell lung cancer. Thorac Cancer. 2019;10(3):526-532.
49.Schwabe, RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800-812.
50.Li W, Deng Y, Chu Q, et al. Gut microbiome and cancer immunotherapy. Cancer Lett. 2019;447:41-47.
51.Helmink BA, Khan MAW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377-388.
52.Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133-150.
53.Pitt JM, Vétizou M, Gomperts Boneca I, et al. Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. Oncoimmunology. 2017;6(1):e1132137.
54.Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-1084.
55.Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97.
56.Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103.
57.Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104-108.
58.Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-PD-1 immunotherapy in Chinese non-small cell lung cancer patients. J Thorac Oncol. 2019;14(8):1378-1389.
|
|
|
|