|
Abstract Molecular communication is a short-distance communication technology using biochemical molecules as information carriers, which has unique advantages in metabolic disease research. Cell mitochondrial system contains abundant molecular information. Mitochondrial metabolism is also a process of many molecular interactions. Dynamic observation, vivification and visualization of mitochondrial metabolism by using molecular communication technology are of great significance to reveal the mechanism of mitochondrial diseases, diagnosis, prevention and treatment. In this paper, the basic concepts, architecture, the communication process and the transmission mechanism of molecular communication are summarized. The specific applications of molecular communication technology in mitochondrial metabolism research are introduced, such as mitochondrial energy metabolism, mitochondrial calcium concentration, mitochondrial spatial structure and mitochondrial-nuclear retrograde signal detection and analysis of molecular communication technology. The problems and prospects of molecular communication technology in mitochondrial metabolism research are helpful to deepen the understanding of molecular communication science and to understand the progress of molecular communication technology in mitochondrial metabolism research. Molecular communication provides a method of capturing mitochondrial metabolic information from molecular level to individual level. It can gradually realize quantitative detection of mitochondrial metabolism, and make the monitoring of mitochondrial metabolism develop from invasive, abstract to non-invasive, real-time, quantitative and visual. It will play an important role in the research and prevention of mitochondrial diseases.
|
|
|
|
|
1.Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol. 2011;21(2):72-82.
2.Dressler F, Akan OB. A survey on bio-inspired networking. Comput Netw. 2010;54(6):881-900.
3.Mehmet K, Yilmaz HB, Tugcu T, et al. Energy model for communication via diffusion in nanonetworks. Nano Commun Netw. 2010;1(2):86-95.
4.Tatsuya S, Tadashi N. Molecular communication: a personal perspective. T Nanobiosci. 2018;17(4):424-432.
5.Atakan B, Akan OB, Balasubramaniam S. Body area nanonetworks with molecular communications in nanomedicine. Commun Mag. 2012;50(1):28-34.
6.Akyildiz IF, Brunetti F, Blázquez C. Nanonetworks: a new communication paradigm. Comput Netw. 2008;52(12):2260-2279.
7.Huang W, Zhang Q. Fluorous photoaffinity labeling to probe protein-small molecule interactions. Methods Mol Biol. 2015;1263:253-261.
8.Suckling DM, Burnip GM. Orientation disruption of planotortrix octo using pheromone or inhibitor blends. Entomol Exp Appl. 2015;78(2):149-158.
9.Hiyama S, Moritani Y. Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun Netw. 2010;1(1):20-30.
10.Enomoto A, Moore MJ, Suda T, et al. Design of self-organizing microtubule networks for molecular communication. Nano Commun Netw. 2011;2(1):16-24.
11.Srinivas KV, Eckford AW, Adve RS. Molecular communication in fluid media: the additive inverse gaussian noise channel. IEEE Trans Inf Theory. 2012;58(7):1-1.
12.彭木根, 艾元, 纪晓东. 基于扩散的分子通信与身体域纳米网络. 北京邮电大学学报. 2016;39(2):1-9.
13.Mahfuz MU, Makrakis D, Mouftah HT. Strength-based optimum signal detection in concentration-encoded pulse-transmitted OOK molecular communication with stochastic ligand-receptor binding. Simul Model Pract Theory. 2014;42:189-209.
14.Nakano T, Moore M. Molecular communication paradigm overview. Next Gen Inf Tech. 2011;2(1):9-16.
15.Li ZP, Zhang J, Cai SB, et al. Review on molecular communication. J Commun. 2013;34(5):152-167.
16.Jr FR. Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol. 2006;6(9-10):2769-2775.
17.Bhavna, Md S, Ali M, et al. Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int J Biol Macromol. 2014;67:418-425.
18.Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138-1146.
19.Freitas RA, Robert A. What is nanomedicine. Nanomed Nanotech Biol Med. 2005;1(1):2-9.
20.Guo H, Johari P, Jornet J, et al. Intra-body optical channel modeling for in-vivo wireless nanosensor networks. T Nanobiosci. 2016;15(1):41-52.
21.Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. Comp Stand Inter. 1993;15(2-3):319-320.
22.Freitas RA. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005;3(4):243-246.
23.Singh SP, Kumar A, Kumar S. Novel expressions for CEP/BEP under GGD noise for nano communication system. Int J Electron Lett. 2017;5(4):1-12.
24.Via J. Biochemical adaptation: mechanism and process in physiological evolution. Biochem Mol Biol Edu. 2010;30(3):215-216.
25.翁羽翔, 王专, 陈海龙, 等. 量子相干态的二维电子光谱测量的原理、应用和发展. 物理学报. 2018;67(12):201-207.
26.Engel GS, Calhoun TR, Read EL, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782-786.
27.Panitchayangkoon G, Hayes D, Fransted KA, et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA. 2010;107(29):12766-12770.
28.Collini E, Wong CY, Wilk KE, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature. 2010;463(7281):644-647.
29.Gao W, Sun P, Sun YF, et al. Study on application of image entropy in evaluation of jamming effect on spectral imaging. Opt Optoe Tech. 2016;14(1):16-21.
30.Tan LT, Chan KG, Pusparajah P, et al. Targeting membrane lipid a potential cancer cure? Front Pharmacol. 2017;8(232):12.
31.Nakano T, Liu JQ. Information transfer through calcium signaling. Nano-Net. 2009;20:29-33.
32.Nakano T, Liu JQ. Design and analysis of molecular relay channels: an information theoretic approach. T Nanobiosci. 2010;9(3):213-221.
33.Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015;356(2):197-203.
34.Tracy MS, Robert C. Regulation of polyamine metabolism by curcumin for cancer prevention and therapy. Med Sci. 2017;5(4):38.
35.van der Kemp WJ, Stehouwer BL, Luijten PR, et al. Detection of alterations in membrane metabolism during neoadjuvant chemotherapy in patients with breast cancer using phosphorus magnetic resonance spectroscopy at 7 Tesla. Springerplus. 2014;3(1):634.
36.秦斌, 关飞云, 刘许慧, 等. 3T动态磁共振磷谱对正常人骨骼肌线粒体功能的在体研究. 医学影像学杂志. 2011;21(8):1280-1283.
37.Lagemaat MW, Vos EK, Maas MC, et al. Phosphorus magnetic resonance spectroscopic imaging at 7T in patients with prostate cancer. Invest Radiol. 2014;49(5):363-372.
38.Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369.
39.Gao J, Li J, Du J, et al. Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncol Lett. 2016;11:1791-1798.
40.Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev. 2016;1(2):207-226. |
|
|