Mechanism of miR-125b inhibiting proliferation of glioma cells
1Chen Pengfei,1Huo Xianhao,1Liu Wenqing,1Li Kai, 2Xue Tao
1Neurosurgery Department, General Hospital of Ningxia Medical University, Yinchuan 750001, Ningxia, China; 2Nutrition Department, General Hospital of Ningxia Medical University, Yinchuan 750001, Ningxia, China
Abstract:Objective To explore the molecular mechanism of miR-125b inhibiting proliferation of glioma cells. Methods A total of 32 glioma patients were included in the research from December 2016 to December 2017, 31 patients who were with cerebral hemorrhage undergoing intracerebral hematoma removal or with intracranial decompression due to craniocerebral injury but normal brain tissuenormal were collected as the control. The expressions of microRNAs-125b in glioma tissue and LN229 cells were detected by qPCR. The inhibitory effect of microRNAs-125b on the growth of LN229 cells was detected after transfecting microRNAs-125b mimics. The target of microRNAs-125b was predicted by targetscan, miRanda and other prediction softwares. Dual luciferase reporter gene system was used to detect the interaction between RNA-125b and STAT3 mRNA, and the effect of RNA-125b on the expression of STAT3 protein in LN229 cells was detected by Western blot. Results Compared with normal para-cancerous brain tissues, the expression of microRNA-125b in glioma tissue was significantly decreased, and the expression of microRNA-125b in glioma cell line LN229 was also significantly lower than that in normal astrocytes. Compared with NC mimics, the proliferation of LN229 cells was significantly inhibited after transfected microRNA-125b mimics. Dual luciferase reporter gene system studies have shown that the transcriptional activity of STAT3 can be directly regulated by microRNAs-125b which also significantly inhibit the expression of STAT3 protein in LN229 cells. Conclusion The low expression of miR-125b in glioma cells is associated with poor prognosis. MiR-125b can regulate the proliferation of glioma cells by inhibiting the expression of STAT3.
1陈鹏飞,1霍显浩,1刘文庆,1李凯,2薛涛. miR-125b抑制胶质瘤细胞增殖作用机制研究[J]. 肿瘤代谢与营养电子杂志, 2020, 7(1): 64-69.
1Chen Pengfei,1Huo Xianhao,1Liu Wenqing,1Li Kai, 2Xue Tao. Mechanism of miR-125b inhibiting proliferation of glioma cells. Electron J Metab Nutr Cancer, 2020, 7(1): 64-69.
1.Massillo C, Dalton GN, Farre PL, et al. Implications of microRNA dysregulation in the development of prostate cancer. Reproduction. 2017;154(4):R81-R97.
2.Torregrossa F, Aguennouz M, La Torre D, et al. Role of erythropoietin in cerebral glioma: an innovative target in neuro-oncology. World Neurosurg. 2019;131:346-355.
3.Braunstein S, Raleigh D, Bindra R, et al. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol. 2017;134(3):541-549.
4.茹琴. miR-10b对脑胶质瘤恶性生物学行为的调控及其机制.中国肿瘤生物治疗杂志.2018;25(4):376-381.
5.李民,周鹏,张亮,等. miR-137通过TCF-4抑制胶质瘤细胞生长侵袭能力的体外研究. 临床神经外科杂志. 2018;15(2):116-119, 123.
6.DAmico RS, Englander ZK, Canoll P, et al. Extent of resection in glioma-a review of the cutting edge. World Neurosurg. 2017;103:538-549.
7.周景儒,王栋梁,刘志,等. 脑胶质瘤患者血清miR-720、miR-29 c表达及临床意义. 山东医药. 2018;58(12):77-79.
8.张青,仇诚,夏东彦,等. miR-221/miR-222家族在神经胶质瘤患者脑脊液中的表达及其诊断价值. 临床神经外科杂志. 2017;14(6):401-405.
9.Wang L, Li X, Song YM, et al. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to gamma-radiation by targeting the nuclear factor-kappaB pathway. Mol Med Rep.2015;12(1):609-614.
10.刘义锋,张保朝,温昌明,等. miR-15b通过靶向ACG2信号通路抑制胶质瘤干细胞迁移及侵染. 中国组织工程研究. 2017;21(33):5305-5312.
11.张志勇,张晋霞,李林,等. 人脑胶质瘤中miR221的表达与预后关系的Meta分析. 医学研究杂志. 2017;46(10):81-83.
12.庞智寅,张云鹤,张涛,等. MicroRNA-25表达下调对神经胶质瘤U87细胞增殖与凋亡的影响. 中国现代医学杂志. 2017;27(22):36-41.
13.孔琦,朱家胜,芮景. Th1/Th2偏移与肿瘤免疫研究进展. 现代肿瘤医学.2010;18(8):1653-1655.
14.周静,张保朝. miR-206对胶质瘤细胞增殖、凋亡的影响及其机制.中国老年学杂志.2016;36(15):3739-3742.
15.Yuan M, Da SA, Arnold A, et al. MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma. Sci Rep. 2018;8(1):12506.
16.Grubert RM, Tibana TK, Marchiori E, et al. Intraoperative ultrasound for identifying residual tumor during glioma surgery. Radiol Bras. 2019;52(5):312-313.
17.Zhu M, Liang Z, Wang T, et al. Th1/Th2/Th17 cells imbalance in patients with asthma with and without psychological symptoms. Allergy Asthma Proc. 2016;37(2):148-156.
18.Wang Z, Yuan J, Li L, et al. Long non-coding RNA XIST exerts oncogenic functions in human glioma by targeting miR-137. Am J Transl Res. 2017;9(4):1845-1855.
19.周艳华,茅慧,张鹏飞,等. miR-451对肝癌细胞增殖、糖酵解及相关基因表达的影响. 现代中西医结合杂志. 2018;27(9):934-937.
20.Nan Y, Guo H, Guo L, et al. MiRNA-451 inhibits glioma cell proliferation and invasion through the mTOR/HIF-1alpha/VEGF signaling pathway by targeting CAB39. Hum Gene Ther Clin Dev. 2018;29(3):156-166.
21.Sun B, Zhao X, Ming J, et al. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene.2019;38(33):6142-6157.
22.Liang HX, Sun LB, Liu NJ. Neferine inhibits proliferation, migration and invasion of U251glioma cells by down-regulation of miR-10b. Biomed Pharmacother. 2019;109:1032-1040.
23.尹航,孙宇强,王小峰,等. miRNA-125家族与肿瘤关系的研究进展. 生命科学.2015;27(9):1146-1154.
24.Jayaraj R, Nayagam SG, Kar A, et al. Clinical theragnostic relationship between drug-resistance specific miRNA expressions, chemotherapeutic resistance, and sensitivity in breast cancer: a systematic review and meta-analysis. Cells. 2019;8(10).
25.Hofmann M H, Heinrich J, Radziwill G, et al. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res. 2009;7(10):1635-1644.
26.He J, Jing Y, Li W, et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS One. 2013;8(2):e56647.
27.朱玉兵,周建国,万燕青,等. miR-125a在胃癌组织中的表达及临床意义. 中国现代普通外科进展. 2017;20(9):733-735.
28.Zhao X, He W, Li J, et al. MiRNA-125b inhibits proliferation and migration by targeting SphK1 in bladder cancer. Am J Transl Res. 2015;7(11):2346-2354.
29.Misso G, Zarone MR, Lombardi A, et al. miR-125b upregulates miR-34a and sequentially activates stress adaption and cell death mechanisms in multiple myeloma.Mol Ther Nucleic Acids. 2019;16:391-406.